Time, measurement and information loss in quantum cosmology
نویسنده
چکیده
A framework for a physical interpretation of quantum cosmology appropriate to a nonperturbative hamiltonian formulation is proposed. It is based on the use of matter fields to define a physical reference frame. In the case of the loop representation it is convenient to use a spatial reference frame that picks out the faces of a fixed simplicial complex and a clock built with a free scalar field. Using these fields a procedure is proposed for constructing physical states and operators in which the problem of constructing physical operators reduces to that of integrating ordinary differential equations within the algebra of spatially diffeomorphism invariant operators. One consequence is that we may conclude that the spectra of operators that measure the areas of physical surfaces are discrete independently of the matter couplings or dynamics of the gravitational field. Using the physical observables and the physical inner product, it becomes possible to describe singularities, black holes and loss of information in a nonperturbative formulation of quantum gravity, without making reference to a background metric. While only a dynamical calculation can answer the question of whether quantum effects eliminate singularities, it is conjectured that, if they do not, loss of information is a likely result because the physical operator algebra that corresponds to measurements made at late times must be incomplete. Finally, I show that it is possible to apply Bohr’s original operational interpretation of quantum mechanics to quantum cosmology, so that one is free to use either a Copenhagen interpretation or a corresponding relative state interpretation in a canonical formulation of quantum cosmology.
منابع مشابه
کوانتش گرانش و بررسی هندسی مکانیک کوانتمی
We elaborate on some recent results on a solution of the Hilbert-space problem in minisuperspace quantum cosmology and discuss the consequences of making the (geometry of the) Hilbert space of ordinary nonrelativistic quantum systems time-dependent. The latter reveals a remarkable similarity between Quantum Mechanics and General Relativity.
متن کاملFundamental spatiotemporal decoherence: a key to solving the conceptual problems of black holes, cosmology and quantum mechanics
Unitarity is a pillar of quantum theory. Nevertheless, it is also a source of several of its conceptual problems. We note that in a world where measurements are relational, as is the case in gravitation, quantum mechanics exhibits a fundamental level of loss of coherence. This can be the key to solving, among others, the puzzles posed by the black hole information paradox, the formation of inho...
متن کاملThe criteria for a solution of the field equations to be a classical limit of a quantum cosmology
If the gravitational field is quantized, then a solution of Einstein’s field equations is a valid cosmological model only if it corresponds to a classical limit of a quantum cosmology. To determine which solutions are valid requires looking at quantum cosmology in a particular way. Because we infer the geometry by measurements on matter, we can represent the amplitude for any measurement in ter...
متن کاملDecoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملOptimization of Thermalisation Loss in the Quantum Dot Solar Cells using a Finite Element Method
As thermalisation loss is the dominant loss process in the quantum dot intermediate band solar cells (QD-IBSCs), it has been investigated and calculated for a QD-IBSC, where IB is created by embedding a stack of InAs(1-x) Nx QDs with a square pyramid shape in the intrinsic layer of the AlPySb(1-y) p-i-n structure. IB, which is an optically coupled but electrically isolated mini-band, divides th...
متن کامل